压力传感器的校准

压力传感器的校准

由于机械、化工或热力影响,测量装置的精度会随着时间的变化而变化。这种老化过程是正常但又不能被忽视的。因此,通过校准来识别这些变化至关重要。

压力表的校准是十分重要的。一方面它是遵循已建立标准如ISO9001. 另一方面,制造商也获得了非常具体的收益,比如工艺改进和节约成本(如采用一些合适的原材料)。这是很有价值的,因为尼尔森研究公司2008年的一项研究表明,对生产企业进行问题产品校准的成本平均每年170万美元。在某些行业,如化工,持续的和无误的校准通常也是跟安全息息相关的。

定义:校准,调试和验定

校准,调试和验定通常被认为是同义词。然而,这三种术语包含着显著的差异。校准-测量仪器的测试数据和标准值之间的比较。这里的标准是一个参考设备,精度是一定的。通过测量比较,每一个测量装置都必须能够通过一系列的比较测量来和国家标准做对比。对于初级标准来说,这意味着在校准层级的顶端,净重试验器通常被用于压力计(也就是活塞式压力计),在国家研究所和校准实验室中使用。

在调试过程中(也称为校准),对测量装置进行干预以最大程度降低测量误差。这里的目的是为了调整因老化产生的误差。因此,调试通常会先于校准而在测量设备上进行直接干预。在调试之后,还会进一步进行校准,以检查和记录该修正。

验定涉及到一种特殊的校准形式。应用在法规强制的设备测试中。当测量的精确性存在于公众利益时总是这样的。同样也适用于当测量结果对产品价格有直接的影响时。比如安装在加油站里的流量计。在德国,验定是国家度量衡办公室和国家认可的测试中心的职责范围。

压力表的校准:标准及要求

在校准前,必须首先确定测量装置的实际校准能力。德国标定服务(DKD)出台了针对压力计校准的DKD-R 6-1指令。当校准机械压力计时,DKD规定了一系列的测试,分为:外部检验(包括对损坏,污染和清洁度的目测和标签)和功能检测(校准设备的完整性,电气功能,控制元件的完好性)。

在下一章DKD-r 6-1指令介绍中,DKD指出了校准的环境条件,校准是在稳定的环境温度下进行的。另外,如果它是在测量仪器本身的实际操作条件下进行的那么这种校准将是最佳的。

压力表的校准:

一旦校准能力确定并且环境条件适宜,那么就可以进行校准了。压力计应该在这里作为一个整体(测量链)进行校准,同时也要考虑到规定的安装位置。

DKD的DKD-r 6-1指令中,对不同的精度等级进行了不同的校准周期。这时候,我们将规定我们的校准周期A的精度等级 <0.1。这个校准周期也是最广泛的。

DKD-R 6-1 的校准序列

当校正精度等级为A时,DKD在实际测量序列执行之前,规定了3个满量程范围。在每个范围内,最大压力必须保持30秒才能完全释放。

接下来,在测量范围内均匀分布的9个点是通过持续增加的压力达到的。零点认为是第一个测量点。目标测量点必须从下面达到。因此,压力增加只能缓慢的进行。如果目标点被覆盖,那么由此产生的滞后性会造成结果的不准确。在这种情况下,必须大幅降低压力,以便从低于测量点的地方到达。一旦达到了这个值,这个值必须在实际读取之前至少保持30秒。

然后对所有剩余的测量点重复这个过程。但最后一个测量点有一个特性,因为它保持了两分钟然后重新阅读并记录下来。

一旦完成,第一个序列的第二个阶段就可以开始了。 这个情况是相反的,它是从上到下达到各个测量点。这里的压力应该是慢慢减小的所以这一次的目标值没有被低估。第二个测量序列以零点结束。

第二个测量序列可以在测量仪器在一个无压力状态持续三分钟后开始。在单个测量点上,重复压力升高和降低的循环。

 根据DKD-R 6-1指令的校准序列A

压力传感器的内部校准

在大多数工业应用中,由专业实验室进行校准是不必要也不实用的。对于现场压力计的校准,推荐使用便携式压力校准仪。它们不像净重试验器那么精准但是也足够满足校准要求了。在这些手持设备中,工作标准和压力生成结合在一起。当校准一个压力传感器时,一旦传感器和测试设备的电气和压力接头连接时,阀门开启,开始零点校准。单个压力测量点能够用集成泵控制。由此产生的电子信号通过综合的数据记录器进行测量和存储,然后在PC上读出数据。

压力传感器的长期稳定性

压力传感器的长期稳定性

诸如温度和机械应力等因素对压力传感器的长期稳定性有负面影响。而生产过程中的不断测试则会将影响降到最低。

生产厂家通常会在产品资料里强调他们的压力传感器的长期稳定性能。这些产品资料中所给出的值是在实验室条件下得出的,例如,小于满量程0.1%的长期稳定性指的是压力传感器在一年的使用周期里总误差下降不超过量程的百分之0.1。

压力传感器通常需要一段时间才会“稳定”。正如前面提到的,零点和灵敏度(输出信号)是这里的主要因素。用户通常会注意到零点的漂移,因为它们很容易识别并进行调整。

如何优化长期稳定性?

为达到最佳长期稳定性,这意味着在产品生命周期中只能出现最小的漂移,核心元件必须是准确的:传感器芯片。高质的压力传感器是长期稳定性能保证。以压阻式压力传感器为例,是使用基于惠斯顿电桥的硅芯片实现的。稳定的压力传感器需要在生产过程一开始就打下好的基础。因此,硅芯片对性能长期稳定的压力传感器的生产至关重要。

传感器的组装也是起到决定性作用的。硅芯片被灌胶到壳体里。由于温度和其他因素的影响,浸入胶体的芯片可能会移动,因此也会影响硅芯片上的机械应力。因此测量结果越来越不准确。

实践证明,新的传感器需要一段时间才能真正稳定——特别是在第一年。用的越久传感器越稳定。为了摈除不良发展的趋势,并且能够更好地评估传感器,通常在离厂前进行一些老化和其他测试。

为使新的压力传感器稳定,STS 在一周内对它们进行热处理。这种所谓的“变动”通常会出现在第一年,因此在很大程度上是可以预见的。因此热处理是人工老化的一种形式。

Image 1: 压阻式压力测量芯体的热处理

传感器会进行进一步的测试以确定它的特性。这包括评估在不同温度下的单只传感器的运行以及设备长期处于超压状态下的加压处理。这些测量用来确定每只传感器的特性。这是为了在不同的环境温度下(温度补偿)。

因此,长期稳定性很大程度上取决于产品质量。当然,定期的校准和调试可以帮助纠正任何漂移。然而,在大多数应用中这都不是必需的:合格的传感器长期内都会保持稳定的性能。

长期稳定的重要性

长期稳定性的关联取决于应用。然而,它在低压力范围内当然是更重要的。一方面,这是由于外部因素对信号有很大的影响。芯片机械应力的细微变化对测量结果的精度有更大的影响。此外,低压力应用的压力传感器通常都是基于硅芯片的,这种芯片的膜片厚度通常小于10μm。

Image 2: 注胶后的硅芯片

尽管如此,长期的稳定性的同时保持精度在物理上是不可能的。诸如压力滞后和温度滞后现象是不能完全消除的。也可以说它们是传感器的特性。对于高精度应用行业,压力和温度滞后不应该超出总量程的0.02%。

还应该提到的是物理定律对传感器的长期稳定性有一定的限制。在特别苛刻的诸如多变、高温的应用中,损耗是很正常的。持续高温超过150 °C的工况会最终损坏传感器:与惠斯通电桥电阻连接的金属层,会融入到硅材料中,最终消耗殆尽。

在这种极端情况下使用压力测量或要求最高精确度的用户需要提前跟 制造商讨论各种可行解决方案。

安装方式会影响压力传感器的精度

安装方式会影响压力传感器的精度

不适当的压力传感器的安装方式会影响到压力测量的精度。尤其是小量程压力。

当压力传感器的安装位置不同于供应商校准时的安装位置,精度则会受到影响。在STS,压力传感器校准的标准是垂直向下的位置。如果用户垂直向上安装这些已校准的压力传感器,就会在压力测量过程中出现误差。

原因很简单。压力传感器垂直向上安装的话,压力传感器的实际重量会影响其精度。由于地球引力,膜片、填充物和传输流体作用于实际的传感器芯片上。这种现象在所有的压阻式压力传感器,中都很常见,但只对小量程压力有影响。

压力传感器的安装:注意小量程压力

在这种情况下,被测压力越低,测量误差越大。100mbar测量范围的压力传感器测量误差可以达到1%。所测压力范围越高,影响越小。测量1bar以上的压力,误差几乎可以忽略。

用户很容易可以检测到这种测量误差,特别是表压类型压力传感器时。如果用户需测量小量程压力而又不可能按照出厂校准的位置来安装测量仪器时,则需要按照实际安装位置进行再校准。

当然,通过适当的应用建议可以很容易地避免这种额外的工作。虽然ough STS 压力传感器按标准垂直向下校准,但很容易在不同的位置进行再校准。如有类似的使用顾虑,请提前跟我们销售人员沟通。我们会给出相关的专业建议以避免您不必要的额外工作。

总误差和精度的关系

总误差和精度的关系

在购买压力传感器时,精度通常是终端用户考虑的主要因素。涉及到精确度的各种专业术语,我们之前已经解释过了。然而,精度只是总误差的一部分,总误差也会出现在压力变送器的产品资料中。

接下来,我们将会解释产品资料中的总误差的意义,以及在选择压力变送器中它所扮演的角色。首先要说明的是精度并不能直接体现出总误差。它取决于各种因素,例如传感器是在哪种条件下使用。我们可以从Fig1 看出误差的三个方面:可调误差,精度和温度影响。

Figure 1: Origins of total error

正如我们在上面图例中所看到的,可调误差由零点和量程误差组成。

“可调误差”名称起源于零点和量程误差可以很容易的识别和调整。

这些误差是用户不希望出现的。事实上STS 压力传感器在出厂前已针对两者做了校正。

长期稳定性也称之为长期误差或长期漂移,是操作过程中出现零点和量程误差的原因。这意味着这两个可调误差可能会在长时间使用传感器后重新出现甚至“恶化”。通过校准和其后的调整,这种长期漂移可以被重新校正。点击了解更多关于校准信息。

精度

精度也会出现在产品资料的“特征曲线偏差”中,这种缺乏概念清晰度的原因归结于“精度”这个词本身不受任何有法定标准的标准限定。

这个术语包含非线性误差,迟滞(压力)误差和非重复性误差(如Fig2所示)。非重复性描述的是当一个压力传感器被连续几次测量时所产生的偏差。迟滞指的是在测量压力时升压及降压行程期间,相同的压力下输出信号是有差值的。然而,这两个因素在压阻式压力传感器中出现时非常少的。

对于精度和总误差影响最大的归结于非线性。这是在压力增加或是降低的时候与基准线比较得出特征曲线最大的正负偏差。了解更多相关术语。

Figure 2: 压力测量多次产生的与特性曲线之间的差值称作非线性

热效应

温度波动会影响到压力传感器的测量值。还有一种称之为温度迟滞的影响。一般来说,迟滞表示的是通过正向和反向路径,测量相同的点所产生的系统偏差。关于温度迟滞,这里的迟滞描述的是当特定温度增加或降低时,在某一温度下的输出信号的差值(即偏差)。在STS的产品中通常在25℃情况下。

Figure 3: 压力变送器的典型热效应表现

总误差或精度

当然,各方面所产生的一个主要问题是用户在选择传感器时应该最关注的是什么?具体案例具体分析。由于可调误差已经在工厂校正,所以只起到次要作用。在此种情况下,传感器通常在使用一年后做次校准和调试。

在采购新的传感器时,精度和热效应起到决定性作用。关键问题是:我是否是在受控条件下测量压力?这意味着当用户在校准期间(通常25℃)在基准温度附近进行测量时,热效应基本上可以忽略不计。然而,当在较大温度范围内进行压力测量时,总误差的定义就变得非常重要了。

以下是STS ATM.1st 压阻式压力传感器 参数(Figure 4):

Figure 4: 摘录自ATM.1st参数表

ATM.1ST的技术参数列出了精度和总误差,精度在不同的压力下进行了细分。给定数值来源于室温下的非线性,迟滞和非重复性。用户希望在可控温度条件下(室温)进行测量,这样使得他们可以得到特定的精度值。

另一方面,参数表中所描述的总误差也包含了温度影响。此外,总误差还增添了“典型”和“最大”项。这些中的首个描述的是典型总误差。不是所有压力传感器都是完全相同的,它们的精度稍有不同。传感器的精度与正态分布相对应。这意味着在整个压力和温度范围内,90%的测量值是和总误差所设定的值是相对应的。剩余测量值则被归结于最大总误差。

Download our free infographic on the subject: